Answer:
126
Step-by-step explanation:
average =sum of the squares of consecutive/total number of consecutive
e.i 504/4=126
Author:
ryan701
Rate an answer:
4[tex]\large\underline{\sf{Solution-}}[/tex]
Let assume that,
Four consecutive even numbers be x, x + 2, x + 4, x + 6.
According to statement,
Sum of squares of four consecutive even numbers is 504.
So,
[tex]\sf \: {x}^{2} + {(x + 2)}^{2} + {(x + 4)}^{2} + {(x + 6)}^{2} = 504 \\ \\ [/tex]
[tex]\sf \: {x}^{2} + {x}^{2} + 4 + 4x + {x}^{2} + 16 + 8x + {x}^{2} + 36 + 12x = 504 \\ \\ [/tex]
[tex]\sf \: 4{x}^{2} + 24x + 56= 504 \\ \\ [/tex]
[tex]\sf \: 4{x}^{2} + 24x + 56 - 504 = 0 \\ \\ [/tex]
[tex]\sf \: 4{x}^{2} + 24x - 448 = 0 \\ \\ [/tex]
[tex]\sf \: 4({x}^{2} + 6x - 112) = 0 \\ \\ [/tex]
[tex]\sf \: {x}^{2} + 6x - 112 = 0 \\ \\ [/tex]
[tex]\sf \: {x}^{2} + 14x - 8x - 112 = 0 \\ \\ [/tex]
[tex]\sf \: x(x + 14) - 8(x + 14) = 0 \\ \\ [/tex]
[tex]\sf \: (x + 14) (x - 8) = 0 \\ \\ [/tex]
[tex]\bf\implies \:x = - 14 \: \: \: or \: \: \: x = 8 \\ \\ [/tex]
So,
Numbers are 8, 10, 12, 14
Or
Numbers are - 14, -12, - 10, - 8
So,
[tex]\bf \: Average = \dfrac{8 + 10 + 12 + 14}{4} = \dfrac{44}{4} = 11\\ \\ [/tex]
Or
[tex]\bf \: Average = \dfrac{ - 8 - 10 - 12 - 14}{4} = \dfrac{ - 44}{4} = - 11\\ \\ [/tex]
Author:
billyjsgv
Rate an answer:
6