Answer:
We know:
Area of the circle =
[tex]\pi \: {r}^{2} [/tex]
Area of the inner circle =
[tex]\pi \: {r}^{2} [/tex]
=
[tex]\pi \times r \times r[/tex]
=
[tex] \frac{22}{7} \times 14 \times 14[/tex]
= 44 × 14
=
[tex] 616{cm}^{2} [/tex]
Area of the outer circle =
[tex]\pi {r}^{2} [/tex]
=
[tex]\pi \times r \times r[/tex]
= 66 ×2
[tex]1386 {cm}^{2} [/tex]
Area of the shaded portion = Area of the outer circle − Area of the inner circle
= 1386 − 616
[tex]770 {cm}^{2} [/tex]
Step-by-step explanation:
please mark me as brainlist