In one such order, company is supposed to make 50 toys in the form of a hemisphere surmounted by a right circular cone of the same base radius as that of hemisphere. If the radius of the base of the cone is 21 cm and height is 28 cm, then (a) find the volume of 50 toys; b) find the ratio of the volume of hemisphere to the volume of cone.​

Answers 2

Answer:

Volume of cone =

3

2

Volume of hemisphere

3

1

πr

2

h=

3

2

(

3

2

πr

3

) ; r =Common radius h = Cone height

h=

3

4

r=

3

4

(21)=28cm

Slant height, l=

r

2

+h

2

=

21

2

+28

2

=35cm

Total surface area = CSA

cone

+CSA

hemisphere

=πrl+2πr

2

=πr(l+2r)=5082cm

2

Solve any question of Surface Areas and

Answer:

(a) volume of 50 toys is 16.155 m³

(b)  [tex]\frac{volume \ of \ hemisphere}{volume \ of \ cone} = \frac{19386.36}{12924.24}[/tex]

Step-by-step explanation:

Given, cone: radius = 21 cm and height = 28 cm

hemisphere: radius = 21 cm

(a) [tex]volume \ of \ hemisphere = \frac{2}{3} \pi\ r^{3}[/tex]

             = [tex]\frac{2}{3} (3.14)(21^{3})[/tex]

             = 19386.36 cm³

  [tex]volume \ of \ cone \ =\frac{1}{3} \pi\ r^{2} h[/tex]

              = [tex]\frac{1}{3}(3.14)21^{2}(28)[/tex]

              =   12924.24 cm³

volume of one toy = 19386.36 + 12924.24

                               =  32310.6 cm³ = 0.3231 m³

volume of 50 toys = 0.3231× 50 = 16.155 m³

(b)  [tex]\frac{volume \ of \ hemisphere}{volume \ of \ cone} = \frac{19386.36}{12924.24}[/tex]

If you know the answer add it here!

Can't find the answer?

Log in with Google

or

Forgot your password?

I don't have an account, and I want to Register

Choose a language and a region
How much to ban the user?
1 hour 1 day 100 years