⇒ a + b + c = 9. - - - - - (1).
⇒ ab + bc + ca = 26. - - - - - (2).
As we know that,
Formula of :
⇒ (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx.
Using this formula in this question, we get.
⇒ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca.
⇒ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca).
Put the values in the equation, we get.
⇒ (9)² = a² + b² + c² + 2(26).
⇒ 81 = a² + b² + c² + 52.
⇒ a² + b² + c² = 81 - 52.
⇒ a² + b² + c² = 29. - - - - - (3).
As we know that,
Formula of :
⇒ x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx).
Using this formula in this question, we get.
⇒ a³ + b³ + c³ - 3abc = (a + b + c)[a² + b² + c² - ab - bc - ca].
⇒ a³ + b³ + c³ - 3abc = (a + b + c)[a² + b² + c² - (ab + bc + ca)].
Put the values in the equation, we get.
⇒ a³ + b³ + c³ - 3abc = (9)[29 - (26)].
⇒ a³ + b³ + c³ - 3abc = 9 x 3.
⇒ a³ + b³ + c³ - 3abc = 27.
Value of : a³ + b³ + c³ = 27 + 3abc.
Author:
sophieq1zv
Rate an answer:
5