In ∆ABC, OB and OC are the bisector of angle ABC and angle ACB respectively. AO produced meets BC at point P. Show that AP is bisector of angle BAC.​

  • matematika

    Subject:

    Math
  • Author:

    myah
  • Created:

    1 year ago

Answers 1

Answer:∠BOC = 90 - 1/2

Step-by-step explanation:

∠CBE = 180 - ∠ABC

∠CBO = 1/2 ∠CBE (BO is the bisector of ∠CBE)

∠CBO = 1/2 ( 180 - ∠ABC)                                                   1/2 x 180 = 90

∠CBO = 90 - 1/2 ∠ABC    (1)                                   1/2 x ∠ABC = 1/2∠ABC

∠BCD = 180 - ∠ACD

∠BCO = 1/2 ∠BCD     ( CO is the bisector os ∠BCD)

∠BCO = 1/2 (180 - ∠ACD)

∠BCO = 90 - 1/2∠ACD    (2)

∠BOC = 180 - (∠CBO + ∠BCO)

∠BOC = 180 - (90 - 1/2∠ABC + 90 - 1/2∠ACD)

∠BOC = 180 - 180 + 1/2∠ABC + 1/2∠ACD

∠BOC = 1/2 (∠ABC + ∠ACD)

∠BOC = 1/2 ( 180 - ∠BAC)      (180 -∠BAC = ∠ABC + ∠ACD)

∠BOC = 90 - 1/2∠BAC

Hence proved

If you know the answer add it here!

Can't find the answer?

Log in with Google

or

Forgot your password?

I don't have an account, and I want to Register

Choose a language and a region
How much to ban the user?
1 hour 1 day 100 years