Answer:
cos A =[tex]\frac{15}{17}[/tex]
tan A = [tex]\frac{8}{15}[/tex]
cosec A = [tex]\frac{17}{8}[/tex]
sec A = [tex]\frac{17}{15}[/tex]
cot A = [tex]\frac{15}{8}[/tex]
Step-by-step explanation:
Given sin A = [tex]\frac{8}{17}[/tex]
we know, sin A = [tex]\frac{perpendicular(P)}{hypotenuse(H)}[/tex]
using the Pythagoras theorem,
[tex]hypotenuse^{2} =base^{2} +perpendicular^{2}[/tex]
[tex]17^{2} =8^{2} +base^{2}[/tex]
[tex]base^{2} =17^{2} -8^{2} \\base^2= 289-64\\base^2=225[/tex]
we have,
base (B) = 15
Now, cos A = [tex]\frac{B}{H}[/tex] = [tex]\frac{15}{17}[/tex]
tan A = [tex]\frac{P}{B}[/tex] = [tex]\frac{8}{15}[/tex]
sec A = [tex]\frac{1}{cos A}[/tex] = [tex]\frac{17}{15}[/tex]
cosec A = [tex]\frac{1}{sin A}[/tex] = [tex]\frac{17}{8}[/tex]
cot A = [tex]\frac{1}{tan A}[/tex] = [tex]\frac{15}{8}[/tex]
learn more about trigonometric identities.
Q 1 What are Trigonometric identities?
https://brainly.in/question/11812006
Q 2 Formulas for Trigonometric identities.
https://brainly.in/question/225630