Subject:
MathAuthor:
claudiamolinaCreated:
1 year agoStep-by-step explanation:
AnswEr :
• To Prove :
\tan(9) = \dfrac{( \cos(36) - \sin(36) )}{( \cos(36) + \sin(36) )}tan(9)=
(cos(36)+sin(36))
(cos(36)−sin(36))
• Proof :
I'm taking LHS to Prove this Identity -
\Longrightarrow \sf \tan(9)⟹tan(9)
⠀⠀⠀⠀⋆ tan θ = sin θ / cos θ
\Longrightarrow \sf \dfrac{ \sin(9) }{ \cos(9) }⟹
cos(9)
sin(9)
⠀⠀⠀⠀⋆ we can write 9 = (45 - 36)
\Longrightarrow \sf \dfrac{ \sin(45 - 36) }{ \cos(45 - 36) }⟹
cos(45−36)
sin(45−36)
⠀⠀⠀⠀⋆ sin(A - B) = sinAcosB - cosAsinB
⠀⠀⠀⠀⋆ cos(A - B) = cosAcosB + sinAsinB
\Longrightarrow \sf \dfrac{ \sin(45) \cos(36) - \cos(45) \sin(36)}{ \cos(45) \cos(36) + \sin(45) \sin(36) }⟹
cos(45)cos(36)+sin(45)sin(36)
sin(45)cos(36)−cos(45)sin(36)
⠀⠀⠀⠀⋆ sin(45) = 1 /√2 = cos(45)
\Longrightarrow \sf \dfrac{ \dfrac{1}{ \sqrt{2} } \times \cos(36) - \dfrac{1}{ \sqrt{2} } \times \sin(36)}{ \dfrac{1}{ \sqrt{2} } \times \cos(36) + \dfrac{1}{ \sqrt{2} } \times \sin(36) }⟹
2
1
×cos(36)+
2
1
×sin(36)
2
1
×cos(36)−
2
1
×sin(36)
\Longrightarrow \sf \dfrac{ \cancel\dfrac{1}{ \sqrt{2} }( \cos(36) - \sin(36)) }{\cancel\dfrac{1}{ \sqrt{2} }( \cos(36) + \sin(36)) }⟹
2
1
(cos(36)+sin(36))
2
1
(cos(36)−sin(36))
\Longrightarrow \sf \dfrac{( \cos(36) - \sin(36)) }{( \cos(36) + \sin(36)) }⟹
(cos(36)+sin(36))
(cos(36)−sin(36))
⠀
\therefore \boxed{ \tan(9) = \dfrac{( \cos(36) - \sin(36) )}{( \cos(36) + \sin(36) )}}∴
tan(9)=
(cos(36)+sin(36))
(cos(36)−sin(36))
Author:
blassanders
Rate an answer:
2Answer:
To prove :
cos36° + sin36° / cos36° - sin36° = tan81°
Step-by-step explanation:
STEP 1 :
First, we consider the Left Hand Side (LHS),
[tex]\frac{cos 36^{0} + sin 36^{0} }{cos 36^{0} - sin 36^{0}}[/tex]STEP 2 :
Now, divide each term by cos36°, we get
⇒ [tex]\frac{\frac{cos 36^{0} }{cos 36^{0} } + \frac{sin 36^{0} }{cos 36^{0} } }{\frac{cos 36^{0} }{cos 36^{0} } - \frac{sin 36^{0} }{cos 36^{0} } }[/tex] ⇒ [tex]\frac{1 + \frac{sin 36^{0} }{cos 36^{0} } }{1 - \frac{sin 36^{0} }{cos 36^{0} }}[/tex]STEP 3 :
By trigonometric identities, we know that [tex]\frac{sin \alpha }{cos \alpha } = tan \alpha[/tex] , so we write
⇒ [tex]\frac{1 + tan 36^{0} }{1 - tan 36^{0} }[/tex]
since we rewrite the above equation as
⇒ [tex]\frac{1 + tan 36^{0} }{1 - 1. tan 36^{0} }[/tex]
STEP 4 :
We know that tan 45° = 1, the above equation is written as
⇒ [tex]\frac{tan 45^{0} + tan 36^{0} }{1 - tan 45^{0} .tan 36^{0} }[/tex] -----> (1)
STEP 5 :
From the formula, [tex]tan ( \alpha +\beta ) = \frac{tan \alpha + tan \beta }{1 - tan\alpha .tan \beta }[/tex] -------> (2)
By comparing the equation (1) and (2), we write
α = 45° and β = 36°
STEP 6 :
Hence, tan (α + β) = tan (45° + 36°)
= tan 81°
= RHS
∴ LHS = RHS
Thus, cos36° + sin36° / cos36° - sin36° = tan81°
Click here to know more about " trigonometric formula " :
https://brainly.in/question/4068827
https://brainly.in/question/5389502
Author:
chloefe5d
Rate an answer:
6