Answer:
[tex]\qquad \:\boxed{\begin{aligned}& \qquad \:\sf \: (c) \: \: 0 \qquad \: \\ \\& \qquad \:\sf \: (d) \: \: \dfrac{ - 9}{2} \end{aligned}} \qquad \\ \\ [/tex]
Step-by-step explanation:
[tex]\large\underline{\sf{Solution-c}}[/tex]
Given expression is
[tex]\sf \: \: ... \: \times \: \dfrac{ - 9}{11} = 0 \\ \\ [/tex]
Let assume that missing value be x
So,
[tex]\sf \: \: x \: \times \: \dfrac{ - 9}{11} = 0 \\ \\ [/tex]
[tex]\sf \: \: x \: = \: 0 \: \div \: \dfrac{ - 9}{11} \\ \\ [/tex]
[tex]\sf\implies \sf \: \: x \: = \: 0 \: \\ \\ [/tex]
Hence,
[tex]\qquad\qquad\boxed{ \sf{ \:\bf \: \: 0 \: \times \: \dfrac{ - 9}{11} = 0 \: }} \\ \\ [/tex]
[tex]\large\underline{\sf{Solution-d}}[/tex]
Given expression is
[tex]\sf \:\dfrac{6}{ - 27} \: \times \: ... \: = \: 1 \\ \\ [/tex]
Let assume that missing value be x.
[tex]\sf \:\dfrac{6}{ - 27} \: \times \: x \: = \: 1 \\ \\ [/tex]
[tex]\sf \:x \: = \: 1 \: \div \: \dfrac{6}{ - 27} \: \\ \\ [/tex]
[tex]\sf \:x \: = \: 1 \: \times \: \dfrac{ - 27}{6} \: \\ \\ [/tex]
[tex]\sf \:x \: = \: \dfrac{ - 27}{6} \: \\ \\ [/tex]
[tex]\sf\implies \sf \:x \: = \: - \: \dfrac{9}{2} \: \\ \\ [/tex]
Hence,
[tex]\qquad\qquad\boxed{ \sf{ \: \bf \:\dfrac{6}{ - 27} \: \times \: \dfrac{ - 9}{2} \: = \: 1 \: }}\\ \\ [/tex]