Answer:
3[tex]\documentclass{}\begin{document} $$\hat{j} $$\end{document}[/tex] - 3[tex]\documentclass{}\begin{document} $$\hat{k} $$\end{document}[/tex]
Explanation:
Given
A = 2i + j + k
B = i - j - k
To find
Cross-Product of two vectors
To find the cross-product, we use the matrix method to get our answer quickly and accurately.
Representing the values given in the matrix format,
[tex]\left[\begin{array}{ccc}i&j&k\\2&1&1\\1&-1&-1\end{array}\right][/tex]
[tex]\documentclass{}\begin{document} $$ \vec{A} $$\end{document}[/tex] X [tex]\documentclass{}\begin{document} $$ \vec{B} $$\end{document}[/tex] = [tex]\documentclass{}\begin{document} $$\hat{i} $$\end{document}[/tex] ( 1 x -1 - (1 x -1)) - [tex]\documentclass{}\begin{document} $$\hat{j} $$\end{document}[/tex] (2 x -1 - (1 x 1)) + [tex]\documentclass{}\begin{document} $$\hat{k} $$\end{document}[/tex] (2 x -1 - (1 x 1))
[tex]\documentclass{}\begin{document} $$ \vec{A} $$\end{document}[/tex] X [tex]\documentclass{}\begin{document} $$ \vec{B} $$\end{document}[/tex] = [tex]\documentclass{}\begin{document} $$\hat{i} $$\end{document}[/tex] (-1 + 1) - [tex]\documentclass{}\begin{document} $$\hat{j} $$\end{document}[/tex] ( -2 - 1) + [tex]\documentclass{}\begin{document} $$\hat{k} $$\end{document}[/tex] (-2 -1)
[tex]\documentclass{}\begin{document} $$ \vec{A} $$\end{document}[/tex] X [tex]\documentclass{}\begin{document} $$ \vec{B} $$\end{document}[/tex] = [tex]\documentclass{}\begin{document} $$\hat{i} $$\end{document}[/tex](0) + 3[tex]\documentclass{}\begin{document} $$\hat{j} $$\end{document}[/tex] -3[tex]\documentclass{}\begin{document} $$\hat{k} $$\end{document}[/tex]
[tex]\documentclass{}\begin{document} $$ \vec{A} $$\end{document}[/tex] X [tex]\documentclass{}\begin{document} $$ \vec{B} $$\end{document}[/tex] = 3[tex]\documentclass{}\begin{document} $$\hat{j} $$\end{document}[/tex] - 3[tex]\documentclass{}\begin{document} $$\hat{k} $$\end{document}[/tex]