Given:
Distance= 690 metres
Angle of elevation= 60°
Gravity (g)= 10 m/s²
To Find:
Initial velocity (V₀)
Solution:
For solving this question, we are going to use the horizontal range formula of projectile motion.
To find the maximum horizontal displacement, we consider the "y" component of the displacement equation to be zero,
⇒y= tanθ. x - [tex]\frac{g}{2u^{2}cos^{2}θ }[/tex]. x²
⇒0= tanθ. x - [tex]\frac{g}{2u^{2}cos^{2}θ }[/tex]. x²
⇒ Range = u²sin2θ/g
[ u= Initial velocity, θ= angle of elevation]
[As all the quantities are in the S.I unit, no conversion is needed.]
Thus, now substituting the given values in the equation, we get,
⇒ 690= [u² × sin (2×45°)] / 10
⇒ 690= [u² × sin 90°] / 10
⇒ 690= u²/10 ∵ [ sin 90°=1]
⇒ 690× 10= u²
⇒ √6900 = u
⇒ u= 83.066 m/sec
Hence, the Initial velocity (V₀) is 83.066 m/sec.
Author:
gilliand8ff
Rate an answer:
20