Subject:
PhysicsAuthor:
nathanielw5gzCreated:
1 year agoAuthor:
reinaldofp1f
Rate an answer:
10Answer:
[tex]\qquad\qquad\boxed{ \bf{ \: \: \:(d) \: \: \: None\:of\:these \: \: \: }} \\ \\ [/tex]
Explanation:
Given that,
[tex]\qquad\sf \: {A}^{2} = A \\ \\ [/tex]
Taking determinant on both sides, we get
[tex]\qquad\sf \: | {A}^{2} | = |A| \\ \\ [/tex]
can be rewritten as
[tex]\qquad\sf \: |A.A | = |A| \\ \\ [/tex]
[tex]\qquad\sf \: |A| |A| = |A| \\ \\ [/tex]
[tex]\qquad\sf \: |A| |A| - |A| = 0 \\ \\ [/tex]
[tex]\qquad\sf \: |A| (|A| -1)= 0 \\ \\ [/tex]
[tex]\qquad\sf \: |A| = 0 \: \: \: or \: \: \: |A| -1= 0 \\ \\ [/tex]
[tex]\qquad\sf\implies \sf \: |A| = 0 \: \: \: or \: \: \: |A| = 1\\ \\ [/tex]
[tex]\rule{190pt}{2pt}[/tex]
Additional Information
If A and B are square matrices of order n, then
[tex]\sf \: |AB| = |A| \: |B| \\ \\ [/tex]
[tex]\sf \: |adjA| = { |A| }^{n - 1} \\ \\ [/tex]
[tex]\sf \: |A \: adjA| = { |A| }^{n} \\ \\ [/tex]
[tex]\sf \: | {A}^{ - 1} | = { |A| }^{ - 1} \\ \\ [/tex]
[tex]\sf \: |A| = |A'| \\ \\ [/tex]
[tex]\sf \: |adj(adj \: A)| = { |A| }^{ {(n - 1)}^{2} } \\ \\ [/tex]
Author:
amirah
Rate an answer:
7