Answer:
2 days
Step-by-step explanation:
x take 3 days to complete 1 whole work
so in 1 day he will do
[tex] \frac{1}{3} [/tex]
y take 6 days to complete 1 whole work
so in 1 day y will do
[tex] \frac{1}{6} [/tex]
together they can do
[tex] \frac{1}{3} + \frac{1}{6} [/tex]
[tex] \frac{2 + 1}{6} [/tex]
[tex] \frac{3}{6} \\ \frac{1}{2} [/tex]
Total days
[tex] \frac{1}{ \frac{1}{2 \\ } } [/tex]
[tex]1 \times 2 = 2days[/tex]
Author:
savion
Rate an answer:
1Answer:
Let the total amount of work = 1 Part
Now, X can do,
In 3 days 1 part
In 1 day --
[tex](1 \div 3) \: part\\ = \frac{1}{3} \: part[/tex]
And, Y can do,
In 6 days 1 part
In 1 day --
[tex](1 \div 6) \: part \\ = \frac{1}{6} \: part[/tex]
If they work together they will do in a single day -
[tex]( \frac{1}{3} + \frac{1}{6} \: ) \: part\\ = ( \frac{2 + 1}{6} ) \: part \\ = \frac{3}{6} \: part \\ = \frac{1}{2} \: part[/tex]
According to our steps --
They together can do -
½ part in 1 day
Then, 1 part in --
[tex](1 \div \frac{1}{2} ) \: days \\ = (1 \times 2) \: days \\ = 2 \: days[/tex]
So if x and y do the same work together they will finish it within - 2 daysHope it will help you friend, if it helps you then please mark it as the Brainliest Answer..
Author:
master40
Rate an answer:
2