Answer:
Given :-Given :
According to the question by using the formula we get,
[tex]\implies \sf\boxed{\bold{A =\: P\bigg(1 - \dfrac{r}{100}\bigg)^n}}\\[/tex]
where,
So, by putting those values we get,
[tex]\implies \sf A =\: 650000\bigg(1 - \dfrac{10}{100}\bigg)^2\\[/tex]
[tex]\implies \sf A =\: 650000\bigg(\dfrac{100 - 10}{100}\bigg)^2\\[/tex]
[tex]\implies \sf A =\: 650000\bigg(\dfrac{90}{100}\bigg)^2\\[/tex]
[tex]\implies \sf A =\: 65{\cancel{00}}{\cancel{00}} \times \dfrac{90}{1\cancel{00}} \times \dfrac{90}{1\cancel{00}}\\[/tex]
[tex]\implies \sf A =\: 65 \times 90 \times 90\\[/tex]
[tex]\implies \sf\bold{\underline{A =\: 526500}}\\[/tex]
[tex]\therefore[/tex] The value of a car after 2 years is ₹526500 .
Author:
moisésqyvm
Rate an answer:
5