Show that the diagonals of a parallelogram divide it into four triangles of equal areaschii ..... kl walii baat naraj too nhii ho ne​

Answers 2

To prove:- ar(△AOB)=ar(△BOC)=ar(△COD)=ar(△AOD)

Proof:-

Let ABCD be a parallelogram with diagonals AC and BD

intersecting at O. Since the diagonals of a parallelogram bisect each other at the point of intersection.

Therefore,

AO=OC and BO=OD

We know that the median of a triangle divides it into two equal parts.

Now,

In △ABC,

∵BO is median.

ar(△AOB)=ar(△BOC).....(1)

In △BCD,

∵CO is median.

ar(△BOC)=ar(△COD).....(2)

In △ACD,

∵DO is median.

ar(△AOD)=ar(△COD).....(3)

From equation (1),(2)&(3), we get

ar(△AOB)=ar(△BOC)=ar(△COD)=ar(△AOD)

Hence proved.

Answer:

O is the mid point of AC and BD. (diagonals of bisect each other)

In ΔABC, BO is the median.

∴ar(AOB) = ar(BOC) — (i)

also,

In ΔBCD, CO is the median.

∴ar(BOC) = ar(COD) — (ii)

In ΔACD, OD is the median.

∴ar(AOD) = ar(COD) — (iii)

In ΔABD, AO is the median.

∴ar(AOD) = ar(AOB) — (iv)

From equations (i), (ii), (iii) and (iv), we get,

ar(BOC) = ar(COD) = ar(AOD) = ar(AOB)

Hence, we get, the diagonals of a parallelogram divide it into four triangles of equal area.

Step-by-step explanation:

hmm .....

nhii yrrr

smja rhe sii me bss

answer img

If you know the answer add it here!

Can't find the answer?

Log in with Google

or

Forgot your password?

I don't have an account, and I want to Register

Choose a language and a region
How much to ban the user?
1 hour 1 day 100 years