Answer:
The unit vector will [tex]\hat{R}= \frac{(3i+6j -2 k)}{ 7 }[/tex]
Explanation:
let the resultant be R
thus unit. vector in the direction of R is given by
[tex]\hat{R}= \frac{\vec{R}}{ |R| }[/tex]
[tex] \vec{R} = R_1+R_2 [/tex]
[tex] \vec{R} = (2i+4j -5 k) + (1i + 2j + 3k)[/tex]
[tex] \vec{R} = (3i+6j -2 k) [/tex]
[tex] | \vec{R} | = \sqrt{( {3}^{2} + {6}^{2} + {( - 2)}^{2} ) } \\ = \sqrt{49} \\ = 7[/tex]
[tex]\hat{R}= \frac{(3i+6j -2 k)}{ 7 }[/tex]