From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least three men are in the committee. In how many ways can it be done? a.624 b.702 c.756 d.812

Answers 2

Answer:

[tex]\qquad\qquad\qquad\boxed{ \bf{ \:(c) \: \: 756 \: \: }} \\ \\ [/tex]

Step-by-step explanation:

Given that, From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least three men are in the committee.

The following cases arises :

[tex]\begin{gathered}\boxed{\begin{array}{c|c} \bf Number \: of \: men & \bf Number \: of \: women \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 3 & \sf 2 \\ \\ \sf 4 & \sf 1 \\ \\ \sf 5 & \sf 0 \end{array}} \\ \end{gathered} \\ \\ [/tex]

So, Number of ways are

[tex]\sf \: = \ ^7C_3 \times \ ^6C_2 + \ ^7C_4 \times \ ^6C_1 + \ ^7C_5 \times \ ^6C_0 \\ \\ [/tex]

[tex]\sf \: = \: \dfrac{7!}{3!4!} \times \dfrac{6!}{2!4!} + \dfrac{7!}{4!3!} \times \dfrac{6!}{1!5!} + \dfrac{7!}{5!2!} \times 1 \\ \\ [/tex]

[tex]\sf \: = \: \dfrac{7.6.5.4!}{3!4!} \times \dfrac{6.5.4!}{2!4!} + \dfrac{7.6.5.4!}{4!3!} \times \dfrac{6.5!}{5!} + \dfrac{7.6.5!}{5!2!} \\ \\ [/tex]

[tex]\sf \: = \: \dfrac{7.6.5}{3.2.1} \times \dfrac{6.5}{2.1} + \dfrac{7.6.5}{3.2.1} \times 6 + \dfrac{7.6}{2.1} \\ \\ [/tex]

[tex]\sf \: = \:35 \times 15 + 35 \times 6 + 21 \\ \\ [/tex]

[tex]\sf \: = \:525 + 210 + 21 \\ \\ [/tex]

[tex]\sf \: = \:756 \\ \\ [/tex]

Hence,

[tex]\bf\implies \: Number \: of \: ways \: = \: 756 \\ \\ [/tex]

[tex]\rule{190pt}{2pt}[/tex]

Formulae Used

[tex]\sf \: \ ^nC_r \: = \: \dfrac{n!}{r! \: (n - r)!} \\ \\ [/tex]

[tex]\sf \: \ ^nC_0 \: = \: 1 \\ \\ [/tex]

Answer:

756

Step-by-step explanation:

here 5 members are needed to be selected. out of that atleast 3 should be men

which means 3 m or 2 w, 4m or 1 w , 5m or 0w can be selected

hence total no of ways =7c3*6c2+7c4*6c1+7c5*6c0

solving the above equation we will get 756 ways

answer img

If you know the answer add it here!

Can't find the answer?

Log in with Google

or

Forgot your password?

I don't have an account, and I want to Register

Choose a language and a region
How much to ban the user?
1 hour 1 day 100 years