Answer:
Answer:
\sin30^\circ+ \cos 45\circ+ \tan 180^\circ=\frac{\sqrt2+2}{2\sqrt2}sin30
∘
+cos45∘+tan180
∘
=
2
2
2
+2
Step-by-step explanation:
Given : Expression \sin30^\circ+ \cos 45\circ+ \tan 180^\circsin30
∘
+cos45∘+tan180
∘
To find : Evaluate the expression ?
Solution :
We know the values of trigonometric terms like,
\sin30^\circ=\frac{1}{2}sin30
∘
=
2
1
\cos 45\circ=\frac{1}{\sqrt2}cos45∘=
2
1
\tan 180^\circ=0tan180
∘
=0
Substitute the values in the expression,
\sin30^\circ+ \cos 45\circ+ \tan 180^\circsin30
∘
+cos45∘+tan180
∘
=\frac{1}{2}+\frac{1}{\sqrt2}+0=
2
1
+
2
1
+0
=\frac{\sqrt2+2}{2\sqrt2}=
2
2
2
+2
Therefore, \sin30^\circ+ \cos 45\circ+ \tan 180^\circ=\frac{\sqrt2+2}{2\sqrt2}sin30
∘
+cos45∘+tan180
∘
=
2
2
2
+2
Step-by-step explanation:
here's the answer mark as brainleast