Solution:
i) In the figure (i),
∠A + ∠B + ∠C = 180°
(Sum of angles of a triangle)
b° + 50° + b° = 180°
⇒ 2b° + 50° = 180°
⇒ 2b° = 180°- 50° = 130°
⇒ b° = 130°/2 = 65°
Hence ∠A = b° = 65°
And ∠c = b° = 65°
(ii) In the figure (ii)
∠A + ∠B + ∠C = 180°
(Sum of angles of a triangle)
x + 90° + x° = 180°
2x° + 90° = 180°
2x° = 180°- 90°
2x° = 90°
x° = 90°/ 2 = 45°
Hence ∠A = x° = 45°
And ∠C = x° = 45°
(iii) In the figure (iii)
∠A + ∠B + ∠C = 180°
(Sum of angles of a triangle)
K° + k° + k° = 180°
3k° = 180°
K° = 180°/3 = 60°
Hence ∠A = K° = 60°, ∠B = k = 60°
and ∠C = K° = 60°
(iv) In the figure (iv)
∠A + ∠B + ∠C = 180°
(Sum of Angles of a triangle)
(m° - 5") + 60° + (m° + 5°) = 180°
m° - 5° + 60° + m° + 5° = 180°
2m° = 180° - 65 + 5
2m° = 120°
∴ m° = 120°/60°
Hence ∠A = m° – 5° = 60°– 5° = 55°
and ∠C = m° + 5° = 60° + 5° = 65°