Answer:
Given :-
- A rectangle of length (10 + x) m and breadth (7 - y) m.
To Find :-
- What is the perimeter of a rectangle ?
Solution :-
Given :
[tex]\mapsto \bf Length_{(Rectangle)} =\: (10 + x)\: m\\[/tex]
[tex]\mapsto \bf Breadth_{(Rectangle)} =\: (7 - y)\: m\\[/tex]
According to the question by using the formula we get,
[tex]\small \implies \sf\boxed{\bold{Perimeter_{(Rectangle)} =\: 2(Length + Breadth)}}\\[/tex]
[tex]\implies \sf Perimeter_{(Rectangle)} =\: 2\bigg\{(10 + x) + (7 - y)\bigg\}\\[/tex]
[tex]\implies \sf Perimeter_{(Rectangle)} =\: 2(10 + x + 7 - y)\\[/tex]
[tex]\implies \sf Perimeter_{(Rectangle)} =\: 20 + 2x + 14 - 2y\\[/tex]
[tex]\implies \sf Perimeter_{(Rectangle)} =\: 20 + 14 + 2x - 2y\\[/tex]
[tex]\implies \sf\bold{\underline{Perimeter_{(Rectangle)} =\: (34 + 2x - 2y)\: m}}\\[/tex]
[tex]\therefore[/tex] The perimeter of a rectangle is (34 + 2x - 2y) m .