[tex]\huge{\underline{\underline{\mathfrak{Answer :}}}}[/tex]
Let,
- [tex]\sf{T_{L}}[/tex] = Tension at the lowest point.
- [tex]\sf{T_{H}}[/tex] = Tension at the highest point.
- [tex]\sf{V_{L}}[/tex] = Velocity at the lowest point.
- [tex]\sf{V_{H}}[/tex] = Velocity at the highest point.
________________________
At lowest point L,
[tex]\sf{\rightarrow T_L = \dfrac{m {v_L}^2}{r} + mg}[/tex] _______(1)
At highest point H,
[tex]\sf{\rightarrow T_L = \dfrac{m {v_H}^2}{r} - mg}[/tex] _______(2)
________________________
Subtracting (1) by (2).
[tex]\sf{\rightarrow T_L - T_H = \dfrac{{mv_L}^2}{r} + mg - (\dfrac{{mv_H}^2}{r} - mg)}[/tex]
[tex]\sf{\rightarrow T_L - T_H = \dfrac{m}{r} ({v_L}^2 - {v_H}^2 + 2mg})[/tex] ______(3)
________________________
By law of conservation of energy,
(P.E + K.E) at L = (P.E + K.E) at H
[tex]\sf{ \therefore 0 + \dfrac{1}{2} {mv_L}^2 = mg.2r + \dfrac{1}{2} {mv_H}^2}[/tex]
[tex]\sf{ \therefore \dfrac{1}{2}m ({v_L}^2 - {v_H}^2) = mg.2r}[/tex]
[tex]\sf{ \therefore {v_L}^2 - {v_H}^2 = 4gr}[/tex]_______(4)
________________________
From equation (3) and (4),
[tex]\sf{\rightarrow T_L - T_H = \dfrac{m}{r}(4gr) + 2mg}[/tex]
[tex]\sf{\rightarrow T_L - T_H = 4mg + 2mg}[/tex]
[tex]\bf{ \therefore T_L - T_H = 6mg}[/tex]