Answer:
The value of [tex]\frac{2.303\ R\ T}{F}[/tex] in the Nernst equation is [tex]0.0592[/tex]·
Explanation:
We know that the Nernst Equation,
[tex]E_{(cell)}\ =\ E^0_{(cell)} \ -\ \frac{2.303\ R\ T}{n\ F}[/tex] log [tex]\frac{[Products]}{[Reactants]}[/tex]
where,
[tex]E_{(cell)}[/tex] [tex]=[/tex] The cell potential
[tex]E^0_{(cell)}[/tex] [tex]=[/tex] The standard cell potential
R [tex]=[/tex] The universal gas constant
T [tex]=[/tex] Temperature in kelvin
n [tex]=[/tex] The number of electrons
F [tex]=[/tex] Faraday's constant
Here, we want to find out the value of [tex]\frac{2.303\ R\ T}{F}[/tex] in the Nernst equation·
For that,
The value of R [tex]=[/tex] [tex]8.314\ J\ K^{-1}\ mol^{-1}[/tex]
The temperature we take as the standard value [tex]=[/tex] [tex]298[/tex] K
The value of F [tex]=[/tex] [tex]96500[/tex] C
On substituting these values in the expression we get,
⇒ [tex]\frac{2.303\ R\ T}{F}[/tex] [tex]=[/tex] [tex]\frac{2.303\ *\ 8.314\ *\ 298}{96500}[/tex]
⇒ [tex]\frac{2.303\ R\ T}{F}[/tex] [tex]=[/tex] [tex]0.0592[/tex]
Therefore,
The value of [tex]\frac{2.303\ R\ T}{F}[/tex] in the Nernst equation is [tex]0.0592[/tex]·