Derive an expression for linear velocity at lowest point and at highest point for particle revolving in vertical circular motion

Answers 1

[tex]\huge{\underline{\underline{\mathfrak{Answer :}}}}[/tex]

Let,

  • [tex]\sf{T_{L}}[/tex] = Tension at the lowest point.
  • [tex]\sf{T_{H}}[/tex] = Tension at the highest point.
  • [tex]\sf{V_{L}}[/tex] = Velocity at the lowest point.
  • [tex]\sf{V_{H}}[/tex] = Velocity at the highest point.

________________________

At lowest point L,

[tex]\sf{\rightarrow T_L = \dfrac{m {v_L}^2}{r} + mg}[/tex] _______(1)

At highest point H,

[tex]\sf{\rightarrow T_L = \dfrac{m {v_H}^2}{r} - mg}[/tex] _______(2)

________________________

Subtracting (1) by (2).

[tex]\sf{\rightarrow T_L - T_H = \dfrac{{mv_L}^2}{r} + mg - (\dfrac{{mv_H}^2}{r} - mg)}[/tex]

[tex]\sf{\rightarrow T_L - T_H = \dfrac{m}{r} ({v_L}^2 - {v_H}^2 + 2mg})[/tex] ______(3)

________________________

By law of conservation of energy,

(P.E + K.E) at L = (P.E + K.E) at H

[tex]\sf{ \therefore 0 + \dfrac{1}{2} {mv_L}^2 = mg.2r + \dfrac{1}{2} {mv_H}^2}[/tex]

[tex]\sf{ \therefore \dfrac{1}{2}m ({v_L}^2 - {v_H}^2) = mg.2r}[/tex]

[tex]\sf{ \therefore {v_L}^2 - {v_H}^2 = 4gr}[/tex]_______(4)

________________________

From equation (3) and (4),

[tex]\sf{\rightarrow T_L - T_H = \dfrac{m}{r}(4gr) + 2mg}[/tex]

[tex]\sf{\rightarrow T_L - T_H = 4mg + 2mg}[/tex]

[tex]\bf{ \therefore T_L - T_H = 6mg}[/tex]

answer img

If you know the answer add it here!

Can't find the answer?

Log in with Google

or

Forgot your password?

I don't have an account, and I want to Register

Choose a language and a region
How much to ban the user?
1 hour 1 day 100 years